skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zelditch, ed., Miriam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The evolution of miniaturization can result in dramatic alterations of morphology, physiology, and behavior; however, the effects of miniaturization on sexual dimorphism remain largely unknown. Here we investigate how miniaturization influences patterns of sexual size dimorphism (SSD) in geckos. Measuring 1,875 individuals from 131 species, we characterized patterns of SSD relative to body size across two families. We found that miniaturized species were more female biased than non-miniaturized species. Additionally, one family that contained many miniaturized species (Sphaerodactylidae) displayed allometric patterns in SSD with body size, where larger species were male biased and smaller species were more female biased. Smaller species in this lineage also produced proportionally larger eggs. By contrast, another family containing few miniaturized species (Phyllodactylidae) displayed a more isometric trend. Together, these observations are consistent with the hypothesis that selection for increased reproductive success in small species of Sphaerodactylidae results in female-biased SSD in these taxa, which in turn drives the positive SSD allometry observed in this lineage. Thus, selection for increased miniaturization in the clade may be offset by selection on maintaining a female size in smaller taxa that ensures reproductive success. 
    more » « less
  2. Abstract Diverse clades of fishes adapted to feeding on the benthos repeatedly converge on steep craniofacial profiles and shorter, wider heads. But in an incipient radiation, to what extent is this morphological evolution measurable and can we distinguish the relative genetic vs. plastic effects? We use the Trinidadian guppy (Poecilia reticulata) to test the repeatability of adaptation and the alignment of genetic and environmental effects shaping poecilid craniofacial morphology. We compare wild-caught and common garden lab-reared fish to quantify the genetic and plastic components of craniofacial morphology across 4 populations from 2 river drainage systems (n = 56 total). We first use micro-computed tomography to capture 3D morphology, then place both landmarks and semilandmarks to perform size-corrected 3D morphometrics and quantify shape space. We find a measurable, significant, and repeatable divergence in craniofacial shape between high-predation invertivore and low-predation detritivore populations. As predicted from previous examples of piscine adaptive trophic divergence, we find increases in head slope and craniofacial compression among the benthic detritivore foragers. Furthermore, the effects of environmental plasticity among benthic detritivores produce exaggerated craniofacial morphological change along a parallel axis to genetic morphological adaptation from invertivore ancestors. Overall, many of the major patterns of benthic-limnetic craniofacial evolution appear convergent among disparate groups of teleost fishes. 
    more » « less
  3. Abstract Phenotypic plasticity is critical for organismal performance and can evolve in response to natural selection. Brain morphology is often developmentally plastic, affecting animal performance in a variety of contexts. However, the degree to which the plasticity of brain morphology evolves has rarely been explored. Here, we use Trinidadian guppies (Poecilia reticulata), which are known for their repeated adaptation to high-predation (HP) and low-predation (LP) environments, to examine the evolution and plasticity of brain morphology. We exposed second-generation offspring of individuals from HP and LP sites to 2 different treatments: predation cues and conspecific social environment. Results show that LP guppies had greater plasticity in brain morphology compared to their ancestral HP population, suggesting that plasticity can evolve in response to environmentally divergent habitats. We also show sexual dimorphism in the plasticity of brain morphology, highlighting the importance of considering sex-specific variation in adaptive diversification. Overall, these results may suggest the evolution of brain morphology plasticity as an important mechanism that allows for ecological diversification and adaptation to divergent habitats. 
    more » « less
  4. Abstract The largest cells are orders of magnitude bigger than the smallest cells. Organelle content scales to maintain cell function, with different organelles increasing in volume, length, or number as cells increase in size. Scaling may also reflect functional demands placed on organelles by increased cell size. Amphibians exhibit exceptional diversity in cell size. Using transmission electron microscopy, we analyzed 3 species whose enterocyte cell volumes range from 228 to 10,593 μm3. We show that nuclear volume increases by an increase in radius while mitochondrial volume increases by an increase in total network length; the endoplasmic reticulum and Golgi apparatus, with their complex shapes, are intermediate. Notably, all 4 organelle types increase in total volume proportional to cell volume, despite variation in functional (i.e., metabolic, transport) demands. This pattern suggests that organellar building blocks are incorporated into more or larger organelles following the same rules across species that vary ~50-fold in cell sizes, consistent with a “limited precursor” model for organellar scaling that, in turn, assumes equivalent cytoplasmic concentrations of organellar building block proteins. Taken together, our results lead us to hypothesize that salamanders have evolved increased biosynthetic capacity to maintain functional protein concentrations despite huge cell volumes. 
    more » « less
  5. Abstract Sexual dimorphism describes phenotypic differences between the sexes; the most prominent of which is sexual size dimorphism (SSD). Rensch’s rule (RR) is an allometric trend in which SSD increases in male-larger taxa and decreases in female-larger ones. Covariation between a trait and overall size within and across species can both be affected by sexual and natural selection. Thus, intraspecific allometric variation could influence the expression of RR. Here we used computer simulations to dissect how RR emerges under specific allometric patterns of intraspecific sexual differentiation in a trait. We found that sexual differentiation in static allometric slopes is the main determinant of RR. Based on our findings, RR and its converse can manifest in both body size and other traits. As a realistic showcase, we also examined RR and static allometry of different body parts in Mediterranean green lizards to establish whether intraspecific and evolutionary allometry are linked. Here, we identified RR and its converse for different traits, where the amount of sexual differentiation in static allometric slopes within species had a significant contribution to RR. Integrating the simulations and the empirical case we corroborate that sexual differentiation in static allometric slopes is a major parameter affecting evolutionary allometry. 
    more » « less
  6. Abstract Adams and Collyer argue that contemporary multivariate (Gaussian) phylogenetic comparative methods are prone to favouring more complex models of evolution and sometimes rotation invariance can be an issue. Here we dissect the concept of rotation invariance and point out that, depending on the understanding, this can be an issue with any method that relies on numerical instead of analytical estimation approaches. We relate this to the ongoing discussion concerning phylogenetic principal component analysis. Contrary to what Adams and Collyer found, we do not observe a bias against the simpler Brownian motion process in simulations when we use the new, improved, likelihood evaluation algorithm employed by mvSLOUCH, which allows for studying much larger phylogenies and more complex model setups. 
    more » « less
  7. Abstract Although avian hybrid zones in the Great Plains have been studied for almost 70 years, we know surprisingly little about the fitness costs to hybrids that keep these zones narrow. We compare age ratios in grosbeaks (Pheucticus ludovicianus and P. melanocephalus) and towhees (Pipilo erythropthalums and P. maculatus), two species pairs that differ in their life histories and molt schedules, to evaluate survival between hybrids and parentals. We then contrast molt and migratory divides as possible sources of selection against hybrids. Hybrid grosbeaks had 27%–33% lower survival relative to their parentals, whereas hybrid towhees had survival rates similar to parentals. Age ratio data for hybrid grosbeaks suggest high mortality in older birds, as expected if selection operates after the first year of life. This pattern is consistent with parental species of grosbeaks having contrasting molt schedules relative to migration, suggesting high mortality costs to hybrids driven by molt biology, which are expressed later in life. Contrasts in molt schedules are absent in towhees. While migratory divides may exist for towhees and grosbeaks, the low adult survival of hybrid grosbeaks suggest that molt may be an important and underappreciated source of selection maintaining this and other narrow avian hybrid zones. 
    more » « less